Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611325

RESUMO

A significant fraction of the food produced worldwide is currently lost or wasted throughout the supply chain, squandering natural and economic resources. Food waste valorization will be an important necessity in the coming years. This work investigates the ability of food waste to serve as a viable nutritional substrate for the heterotrophic growth of Chlorella vulgaris. The impact of different pretreatments on the elemental composition and microbial contamination of seven retail food waste mixtures was evaluated. Among the pretreatment methods applied to the food waste formulations, autoclaving was able to eliminate all microbial contamination and increase the availability of reducing sugars by 30%. Ohmic heating was also able to eliminate most of the contaminations in the food wastes in shorter time periods than autoclave. However, it has reduced the availability of reducing sugars, making it less preferable for microalgae heterotrophic cultivation. The direct utilization of food waste containing essential nutrients from fruits, vegetables, dairy and bakery products, and meat on the heterotrophic growth of microalgae allowed a biomass concentration of 2.2 × 108 cells·mL-1, being the culture able to consume more than 42% of the reducing sugars present in the substrate, thus demonstrating the economic and environmental potential of these wastes.

2.
Food Res Int ; 181: 114112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448111

RESUMO

The incorporation of nanostructures loaded with bioactive compounds into food matrices is a promising approach to develop new functional foods with improved nutritional, health profiles and good sensorial properties. The rheological and tribological properties of yogurt enriched with curcumin-loaded solid lipid nanoparticles (SLN) were evaluated. Also, the TCA solubility index, the bioaccessibility of curcumin and cell viability were assessed after dynamic in vitro digestion. The presence of SLN in yogurt did not affect its rheological properties; however, SLN addition increased the lubrication capability of yogurt. After in vitro digestion, yogurt with added SLN (yogurt_SLN) presented a lower TCA solubility index (22 %) than the plain yogurt (39 %). The bioaccessibility and stability of curcumin were statistically similar for yogurt_SLN (30 % and 42 %, respectively) and SLN alone (20 % and 39 %, respectively). Regarding cell viability results, the intestinal digesta filtrates of both controls (i.e., SLN alone and plain yogurt) did not affect significantly the cell viability, while the yogurt_SLN presented a possible cytotoxic effect at the concentrations tested. In general, the incorporation of SLN into yogurt seemed to promote the mouthfeel of the yogurt and did not adversely affect the bioaccessibility of curcumin. However, the interaction of SLN and yogurt matrix seemed to have a cytotoxic effect after in vitro digestion, which should be further investigated. Despite that, SLN has a high potential to be used as nanostructure in a functional food as a strategy to increase the bioactive compounds' bioaccessibility.


Assuntos
Curcumina , Lipossomos , Nanopartículas , Curcumina/farmacologia , Iogurte , Alimento Funcional , Digestão
3.
Food Chem ; 441: 138295, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38183719

RESUMO

This study evaluated the physicochemical characteristics of nanostructured lipid carriers (NLCs) as a potential vehicle for cannabidiol (CBD), a lipophilic molecule with great potential to promote health benefits. NLCs were produced using hemp seed oil and fully-hydrogenated soybean oil at different proportions. The emulsifiers evaluated were soybean lecithin (SL), Tween 80 (T80) and a mixture of SL:T80 (50:50). CBD was tested in the form of CBD-rich extract or isolate CBD, to verify if it affects the NLCs characteristics. Based on particle size and polydispersity, SL was considered the most suitable emulsifier to produce the NLCs. All lipid proportions evaluated had no remarkable effect on the physicochemical characteristics of NLCs, resulting in CBD-loaded NLCs with particle size below 250 nm, high CBD entrapment efficiency and CBD retention rate of 100% for 30 days, demonstrating that NLCs are a suitable vehicle for both CBD-rich extract or isolate CBD.


Assuntos
Canabidiol , Nanopartículas , Nanoestruturas , Nanopartículas/química , Portadores de Fármacos/química , Promoção da Saúde , Nanoestruturas/química , Óleo de Soja , Emulsificantes/química , Tamanho da Partícula , Polissorbatos
4.
Int J Biol Macromol ; 259(Pt 2): 129288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211926

RESUMO

Hydroxypropyl methylcellulose (HPMC)-based microparticles and modified starch emulsions (OSA-MS) were loaded with resveratrol and characterized regarding their physicochemical and thermal properties. Both delivery systems were subject to an in vitro gastrointestinal digestion to assess the bioaccessibility of resveratrol. In addition, cell-based studies were conducted after in vitro digestion and cytotoxicity and oxidative stress were assessed. HPMC-based microparticles displayed higher average sizes (d) and lower polydispersity index (PDI) (d = 948 nm, PDI < 0.2) when compared to OSA-MS-based emulsions (d = 217 nm, PDI < 0.3). Both proved to protect resveratrol under digestive conditions, leading to an increase in bioaccessibility. Resveratrol-loaded HPMC-microparticles showed a higher bioaccessibility (56.7 %) than resveratrol-loaded emulsions (19.7 %). Digested samples were tested in differentiated co-cultures of Caco-2 and HT29-MTX, aiming at assessing cytotoxicity and oxidative stress, and a lack of cytotoxicity was observed for all samples. Results displayed an increasing antioxidant activity, with 1.6-fold and 1.4-fold increases over the antioxidant activity of free resveratrol, for HPMC-microparticles and OSA-MS nanoemulsions, respectively. Our results offer insight into physiological relevancy due to assessment post-digestion and highlight the protection that the use of micro-nano delivery systems can confer to resveratrol and their potential to be used as functional food ingredients capable of providing antioxidant benefits upon consumption.


Assuntos
Antioxidantes , Anidridos Succínicos , Humanos , Emulsões/química , Antioxidantes/farmacologia , Resveratrol , Derivados da Hipromelose , Anidridos Succínicos/química , Células CACO-2 , Amido/química , Digestão
5.
Food Funct ; 14(23): 10286-10313, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37947452

RESUMO

Herein, we review the current state-of-the-art on the use of micro- and nano-delivery systems, a possible solution to some of the drawbacks associated with the incorporation of resveratrol in foods. Specifically, we present an overview of a wide range of micro-nanostructures, namely, lipidic and polymeric, used for the delivery of resveratrol. Also, the gastrointestinal fate of resveratrol-loaded micro-nanostructures, as a critical parameter for their use as functional food, is explored in terms of stability, bioaccessibility, and bioavailability. Different micro-nanostructures are of interest for the development of functional foods given that they can provide different advantages and properties to these foods and even be tailor-made to address specific issues (e.g., controlled or targeted release). Therefore, we discuss a wide range of micro-nanostructures, namely, lipidic and polymeric, used to deliver resveratrol and aimed at the development of functional foods. It has been reported that the use of some production methodologies can be of greater interest than others, for example, emulsification, solvent displacement and electrohydrodynamic processing (EHDP) enable a greater increase in bioaccessibility. Additionally, the use of coatings facilitates further improvements in bioaccessibility, which is likely due to the increased gastric stability of the coated micro-nanostructures. Other properties, such as mucoadhesion, can also help improve bioaccessibility due to the increase in gut retention time. Additionally, cytotoxicity (e.g., biocompatibility, antioxidant, and anti-inflammatory) and possible sensorial impact of resveratrol-loaded micro- and nano-systems in foods are highlighted.


Assuntos
Alimento Funcional , Nanoestruturas , Resveratrol , Antioxidantes , Nanoestruturas/química , Lipídeos/química , Polímeros
6.
Food Res Int ; 173(Pt 1): 113282, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803596

RESUMO

Microalgae have characteristics that make them unique and full of potential. Their capacity to generate interesting bioactive molecules can add value to various industrial applications. However, most of these valuable compounds are intracellular, which makes their extraction a major bottleneck. Conventional extraction methodologies have some drawbacks, such as low eco-friendly character, high costs and energy demand, long treatment times, low selectivity and reduced extraction yields, as well as degradation of extracted compounds. The gaps found for these methods demonstrate that emergent approaches, such as ohmic heating, pulsed electric fields, ionic liquids, deep eutectic solvents, or high-pressure processing, show potential to overcome the current drawbacks in the release and extraction of added-value compounds from microalgae. These new processing techniques can potentially extract a variety of compounds, making the process more profitable and applicable to large scales. This review provides an overview of the most important and promising factors to consider in the extraction methodologies applied to microalgae. Additionally, it delivers broad knowledge of the present impact of these methods on biomass and its compounds, raising the possibility of applying them in an integrated manner within a biorefinery concept.


Assuntos
Líquidos Iônicos , Microalgas , Biomassa , Microalgas/metabolismo , Eletricidade
7.
Nanomaterials (Basel) ; 13(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570554

RESUMO

Nanosized delivery systems have been the subject of research and discussion in the scientific community due to their unique properties and functionality. However, studies reporting the behaviour of nanodelivery systems under dynamic in vitro digestion conditions are still very scarce. To address this gap, this study aims to assess the dynamic in vitro gastric digestion of lactoferrin/curcumin nanoparticles in the realistic gastric model (RGM). For this purpose, the INFOGEST standard semi-dynamic digestion protocol was used. The nanosystems were characterized in terms of hydrodynamic size, size distribution, polydispersity index (PdI), and zeta potential using dynamic light scattering (DLS), before and during the digestion process. Confocal laser scanning microscopy (CLSM) was also used to examine particle aggregation. In addition, the release of curcumin was evaluated spectroscopically and the intrinsic fluorescence of lactoferrin was measured throughout the digestion process. The protein hydrolysis was also determined by UV-VIS-SWNIR spectroscopy to estimate, in real-time, the presence of free NH2 groups during gastric digestion. It was possible to observe that lactoferrin/curcumin nanoparticles were destabilized during the dynamic digestion process. It was also possible to conclude that low sample volumes can pose a major challenge in the application of dynamic in vitro digestion models.

8.
Appl Microbiol Biotechnol ; 107(16): 5063-5077, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37382612

RESUMO

Nannochloropsis oculata is naturally rich in eicosapentaenoic acid (EPA). To turn this microalga into an economically viable source for commercial applications, extraction efficiency must be achieved. Pursuing this goal, emerging technologies such as high hydrostatic pressure (HHP) and moderate electric fields (MEF) were tested, aiming to increase EPA accessibility and subsequent extraction yields. The innovative approach used in this study combined these technologies and associated tailored, less hazardous different solvent mixtures (SM) with distinct polarity indexes. Although the classical Folch SM with chloroform: methanol (PI 4.4) provided the highest yield concerning total lipids (166.4 mglipid/gbiomass), diethyl ether: ethanol (PI 3.6) presented statistically higher values in terms of EPA per biomass, corresponding to 1.3-fold increase. When SM were used in HHP and MEF, neither technology independently improved EPA extraction yields, although the sequential combination of technologies did result in 62% increment in EPA extraction. Overall, the SM and extraction methodologies tested (HHP-200 MPa, 21 °C, 15 min, followed by MEF processing at 40 °C, 15 min) enabled increased EPA extraction yields from wet N. oculata biomass. These findings are of high relevance for the food and pharmaceutical industries, providing viable alternatives to the "classical" extraction methodologies and solvents, with increased yields and lower environmental impact. KEY POINTS: • Et2O: EtOH is a less toxic and more efficient alternative to Folch solvent mixture • HHP or MEF per se was not able to significantly increase EPA extraction yield • Combinations of HHP and MEF technologies increased both lipids and EPA yields.


Assuntos
Microalgas , Estramenópilas , Ácido Eicosapentaenoico , Solventes , Metanol , Etanol , Biomassa
9.
Foods ; 12(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37048269

RESUMO

Ecological and safe packaging solutions arise as pivotal points in the development of an integrated system for sustainable meat production. The aim of this study was to assess the effect of a combined chitosan (Ch) + green tea extract (GTE) + essential oil (thyme oil, TO; flaxseed oil, FO; or oregano oil, OO) coating on the safety and quality of vacuum-packaged beef during storage at 4 °C. An optimized bio-based coating formulation was selected (2% Ch + 2% GTE + 0.1% FO) to be applied to three fresh beef cuts (shoulder, Sh; knuckle, Kn; Striploin, St) based on its pH (5.8 ± 0.1), contact angle (22.3 ± 0.4°) and rheological parameters (viscosity = 0.05 Pa.s at shear rate > 20 s-1). Shelf-life analysis showed that the Ch-GTE-FO coating delayed lipid oxidation and reduced total viable counts (TVC) and Enterobacteriaceae growth compared with uncoated beef samples over five days. In addition, Ch-GTE-FO coating decreased total color changes of beef samples (e.g., ∆E* = 9.84 and 3.94, for non-coated and coated Kn samples, respectively) for up to five days. The original textural parameters (hardness, adhesiveness and springiness) of beef cuts were maintained during storage when Ch-GTE-FO coating was applied. Based on the physicochemical and microbial characterization results, the combination of the Ch-GTE-FO coating developed was effective in preserving the quality of fresh beef cuts during refrigerated storage along with vacuum packaging.

10.
Food Chem ; 406: 135080, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36462354

RESUMO

Investigating the digestion of lipids is paramount for developing new lipid-based products. This work evaluated the gastrointestinal (GI) digestion of medium-chain fatty acids (MCFAs) rich lipids. The dynamic GI in vitro system was used to simulate gastric, duodenal, jejunal, and ileal GI tract portions. Results from the dynamic protocol were compared against static in vitro assays and GC analyses were conducted to assess the FA profile of FFA released during digestion. Caprylic and capric acids released during the gastric digestion of MCT oil varied from 61-63% and 36-38% of total esterified FA, respectively. Lauric acid was the most representative FFA released (31-54%) during the gastric digestion of coconut oil samples. It was observed that the gastric digestion phase plays a crucial role in the MCFA lipolysis and the lipase activity restricted the amount of free MCFA liberated during the GI digestion, resulting in incomplete lipids hydrolysis.


Assuntos
Ácidos Graxos , Lipólise , Ácidos Graxos/análise , Estômago/química , Hidrólise , Digestão , Triglicerídeos
11.
Food Chem ; 405(Pt A): 134740, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36347204

RESUMO

Curcumin-loaded lipid-based nano delivery systems (nanoemulsions-NE, solid lipid nanoparticles-SLN and nanostructured lipid carriers-NLC) were subjected to different food simulants to evaluate curcumin's in vitro release kinetics and particlés stability. The nano delivery systems were also incorporated into a model beverage and their physicochemical properties were evaluated during storing period. Curcumin's bioaccessibility of beverages containing nano delivery systems were assessed through an in vitro digestion process. All nano delivery systems showed a higher curcumin's release and lower particle stability at 50 % ethanol (lipophilic food simulant) comparatively to hydrophilic food simulants. NLC and SLN showed a good particle's stability within the beverage during storing period, while NE presented high instability immediately after incorporation in the beverage. NLC and SLN did not affect beverage's stability relatively to pH, however the beverage with NLC was slightly more stable regarding color. Beverage with SLN presented higher curcumin bioaccessibility compared to the beverage with NLC, however it showed lower curcumin's stability.


Assuntos
Curcumina , Nanopartículas , Curcumina/química , Portadores de Fármacos/química , Sistemas de Liberação de Fármacos por Nanopartículas , Lipídeos/química , Tamanho da Partícula , Nanopartículas/química , Bebidas
12.
Foods ; 13(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38201111

RESUMO

The effectiveness of an alginate/chitosan nanomultilayer coating without (NM) and with Aloe vera liquid fraction (NM+Av) was evaluated on the postharvest quality of tomato fruit at 20 °C and 85% relative humidity (RH) to simulate direct consumption. Both nanomultilayer coatings had comparable effects on firmness and pH values. However, the NM+Av coating significantly reduced weight loss (4.5 ± 0.2%) and molds and yeasts (3.5-4.0 log CFU g-1) compared to uncoated fruit (16.2 ± 1.2% and 8.0 ± 0.0 log CFU g-1, respectively). It notably lowered O2 consumption by 70% and a 52% decrease in CO2 production, inhibiting ethylene synthesis. Visual evaluation confirmed NM+Av's efficacy in preserving the postharvest quality of tomato. The preservation of color, indicated by the Minolta color (a*/b*) values, demonstrated NM+Av's ability to keep the light red stage compared to uncoated fruit. The favorable effects of NM+Av coating on enhancing postharvest quality indicates it as a potential alternative for large-scale tomato fruit preservation.

13.
Polymers (Basel) ; 14(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36365752

RESUMO

Encapsulation can be used as a strategy to protect and control the release of bioactive extracts. In this work, an extract from Spirulina sp. LEB-18, rich in phenolic compounds, was encapsulated in biopolymeric particles (i.e., composed of alginate) and characterized concerning their thermal behavior using differential scanning calorimetry (DSC), size, morphology, swelling index (S), and encapsulation efficiency (EE%); the release profile of the phenolic compounds at different pHs and the particle behavior under in vitro gastrointestinal digestion were also evaluated. It was shown that it is possible to encapsulate the phenolic extract from Spirulina sp. LEB-18 in alginate particles with high encapsulation efficiency (88.97%). It was also observed that the particles are amorphous and that the encapsulated phenolic compounds were released at a pH 7.2 but not at pH 1.5, which means that the alginate particles are able to protect the phenolic compounds from the harsh stomach conditions but lose their integrity under intestinal pH conditions. Regarding bioaccessibility, it was observed that the encapsulated phenolic compounds showed higher bioaccessibility compared to phenolic compounds in free form. This work increases the knowledge about the behavior of alginate particles encapsulating phenolic compounds during in vitro gastrointestinal digestion. It also provides essential information for designing biopolymeric particle formulations encapsulating phenolic compounds for application in pharmaceutical and food products.

14.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144531

RESUMO

This research work investigates the development of alginate-based films incorporating phenolic compounds extracted from Amaranthus cruentus grain using different solvents. Alginate, glycerol, and amaranth grain phenolic compounds at various concentrations were used to produce the films. An experimental Central Composite Rotatable Design (CCRD) was used to evaluate the effect of these variables on different film's properties, i.e., water vapor permeability, hydrophobicity, moisture content, solubility, thermal, mechanical, and optical properties. This study demonstrated that high phenolic compound content and antioxidant capacity were obtained from amaranth grain using ethanol as the extraction solvent. Alginate films incorporating amaranth phenolic compounds were successfully manufactured, and this study can be used to tailor the formulation of alginate films containing amaranth phenolic compounds, depending on their final food application. For example, less flexible but more resistant and water-soluble films can be produced by increasing the alginate concentration, which was confirmed by a Principal Component Analysis (PCA) and Partial Least Squares (PLS) analysis. This study showed that active alginate films with amaranth phenolic compounds can be tailored to be used as food packaging material with potential antioxidant activity.


Assuntos
Amaranthus , Alginatos , Antioxidantes/análise , Antioxidantes/farmacologia , Grão Comestível/química , Etanol/análise , Glicerol/análise , Fenóis/análise , Extratos Vegetais , Solventes/análise , Vapor/análise
15.
Food Res Int ; 157: 111417, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761663

RESUMO

The current consumers' demand for high quality food products together with the growing awareness regarding the link between health and nutrition has led to the development of novel food products with added functionality. Such functionality can be modulated by adding bio-based nanosystems that can improve the bioaccessibility of bioactive compounds and facilitate nutrient absorption. However, these functional properties can be significantly affected by the adverse conditions (e.g., low pH, presence of enzymes, salts) of the gastrointestinal tract. As such, understanding the behaviour of such delivery systems under digestion conditions is of utmost importance and several analytical tools and in vitro digestion models have been used for this purpose. This review summarizes the latest updates on nanosystems' performance under in vitro digestion and provides critical insights related to important and complementary analytical tools (e.g., rheology, Raman spectroscopy, x-ray scattering) used to assess their performance throughout digestion. Furthermore, the most prominent and frequent challenges associated with such in vitro analyses are also described, together with the current trends regarding the development of in vitro digestion models and some considerations that should be undertaken for their validation. Efforts must be made towards developing reliable and standard in vitro digestion models that use sophisticated analytical techniques to further expand the knowledge regarding nanosystems' behaviour under in vitro digestion conditions.


Assuntos
Digestão , Modelos Biológicos , Alimentos , Trato Gastrointestinal
16.
Gels ; 8(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35049574

RESUMO

Novel fat mimetic materials, such as oleogels, are advancing the personalization of healthier food products and can be developed from low molecular weight compounds such as γ-oryzanol and ß-sitosterol. Following molecular assembly, the formation of a tubular system ensues, which seems to be influenced by elements such as the oleogelators' concentration and ratio, cooling rates, and storage periods. Sterol-based oleogels were formulated under distinct environmental conditions, and a comprehensive study aimed to assess the effects of the mentioned factors on oleogel formation and stability, through visual observation and by using techniques such as small-angle X-ray scattering, X-ray diffraction, confocal Raman spectroscopy, rheology, and polarized microscopy. The long, rod-like conformations, identified by small-angle X-ray scattering, showed that different cooling rates influence oleogels' texture. Raman spectra showed that the stabilization time is associated with the interfibrillar aggregation, which occurred differently for 8 and 10 wt%, with a proven relationship between ferulic acid and the tubular formation. This report gives fundamental insight into the critical point of gelation, referring to the time scale of the molecular stabilization. Our results verify that understanding the structuring mechanisms of oleogelation is decisive for the processing and manufacturing of novel foods which integrate oleogels in their structure.

17.
Nanomaterials (Basel) ; 13(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36616003

RESUMO

The aim of this work was to develop a yogurt fortified with curcumin. Curcumin is a lipophilic compound with a wide range of biological activities; however, it presents low water solubility and low bioavailability, and therefore it was the first to be encapsulated in solid lipid nanoparticles (SLNs). Then the influence of the incorporation of curcumin-loaded SLNs on the physicochemical (i.e., pH, titratable acidity, syneresis and color) and rheological properties of yogurt during its shelf-life (30 days at 4 °C) was evaluated. SLN incorporation into yogurt did not affect pH and titratable acidity compared to the control (i.e., plain yogurt) during shelf-life, even though the yogurt with SLNs presented lower values of pH (4.25 and 4.34) and acidity (0.74% lactic acid and 0.84% lactic acid) than the control in the end, respectively. Furthermore, the yogurt with SLNs presented slightly higher values of syneresis than the control during the shelf-life; however, it did not present visual differences in whey separation. Relative to the color, the incorporation of SLNs into the yogurt imparted a strong yellow color to the sample but did not affect color stability during shelf-life. Both samples showed flow curves with yield stress and shear-thinning behavior during shelf-life, and, regarding the viscoelastic behavior, both showed a typical weak viscoelastic gel with an elastic structure. Overall, curcumin-loaded SLNs incorporation did not affect the physicochemical and rheological stability of yogurt during shelf-life, showing a promising application for the development of new functional foods.

18.
Polymers (Basel) ; 13(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34451172

RESUMO

Pectin films were developed by incorporating a halophyte plant Salicornia ramosissima (dry powder from stem parts) to modify the film's properties. The films' physicomechanical properties, Fourier-transform infrared spectroscopy (FTIR), and microstructure, as well as their biodegradation capacity in soil and seawater, were evaluated. The inclusion of S. ramosissima significantly increased the thickness (0.25 ± 0.01 mm; control 0.18 ± 0.01 mm), color parameters a* (4.96 ± 0.30; control 3.29 ± 0.16) and b* (28.62 ± 0.51; control 12.74 ± 0.75), water vapor permeability (1.62 × 10-9 ± 1.09 × 10-10 (g/m·s·Pa); control 1.24 × 10-9 ± 6.58 × 10-11 (g/m·s·Pa)), water solubility (50.50 ± 5.00%; control 11.56 ± 5.56%), and elongation at break (5.89 ± 0.29%; control 3.91 ± 0.62%). On the other hand, L* (48.84 ± 1.60), tensile strength (0.13 ± 0.02 MPa), and Young's modulus (0.01 ± 0 MPa) presented lower values compared with the control (L* 81.20 ± 1.60; 4.19 ± 0.82 MPa; 0.93 ± 0.12 MPa), while the moisture content varied between 30% and 45%, for the film with S. ramosissima and the control film, respectively. The addition of S. ramosissima led to opaque films with relatively heterogeneous microstructures. The films showed also good biodegradation capacity-after 21 days in soil (around 90%), and after 30 days in seawater (fully fragmented). These results show that pectin films with S. ramosissima may have great potential to be used in the future as an eco-friendly food packaging material.

19.
Foods ; 10(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209227

RESUMO

Carboxymethylcellulose (CMC)-based films can act as a protective barrier in food surfaces and a carrier of bioactive compounds, such as curcumin. However, incorporating curcumin in hydrophilic matrixes can be a challenge, and new strategies need to be explored. In this work, CMC-based films containing free curcumin and curcumin-loaded nanohydrogels (composed of lactoferrin and glycomacropeptide) were produced and characterized. The incorporation of curcumin-loaded nanohydrogels showed a significant decrease in films' thickness (from 0.0791 to 0.029 mm). Furthermore, the water vapor permeability of CMC-based films was significantly decreased (62%) by incorporating curcumin-loaded nanohydrogels in the films. The water affinity's properties (moisture, solubility, and contact angle) of films were also affected by incorporating encapsulated curcumin. The addition of nanohydrogels to CMC-based films reduced the tensile strength values from 16.46 to 9.87 MPa. Chemical interactions were analyzed using Fourier transform infrared spectroscopy. The release profile of curcumin from CMC-based films was evaluated at 25 °C using a hydrophilic food simulant and suggests that the release mechanism of the curcumin happens by Fick's diffusion and Case II transport. Results showed that protein-based nanohydrogels can be a good strategy for incorporating curcumin in edible films, highlighting their potential for use in food applications.

20.
Molecules ; 26(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072026

RESUMO

Pineapple is consumed on a large scale around the world due to its appreciated sensorial characteristics. The industry of minimally processed pineapple produces enormous quantities of by-products (30-50%) which are generally undervalued. The end-of-life of pineapple by-products (PBP) can be replaced by reuse and renewal flows in an integrated process to promote economic growth by reducing consumption of natural resources and diminishing food waste. In our study, pineapple shell (PS) and pineapple core (PC), vacuum-packed separately, were subjected to moderate hydrostatic pressure (225 MPa, 8.5 min) (MHP) as abiotic stress to increase bromelain activity and antioxidant capacity. Pressurized and raw PBP were lyophilized to produce a stable powder. The dehydrated samples were characterized by the following methodologies: chemical and physical characterization, total phenolic compounds (TPC), antioxidant capacity, bromelain activity, microbiology, and mycotoxins. Results demonstrated that PBP are naturally rich in carbohydrates (66-88%), insoluble (16-28%) and soluble (2-4%) fiber, and minerals (4-5%). MHP was demonstrated to be beneficial in improving TPC (2-4%), antioxidant activity (2-6%), and bromelain activity (6-32%) without affecting the nutritional value. Furthermore, microbial and mycotoxical analysis demonstrated that powdered PC is a safe by-product. PS application is possible but requires previous decontamination to reduce the microbiological load.


Assuntos
Ananas/química , Ananas/fisiologia , Antioxidantes/química , Alimento Funcional/análise , Benzotiazóis/química , Compostos de Bifenilo/química , Bromelaínas/análise , Carboidratos/química , Técnicas de Química Analítica , Cor , Fibras na Dieta , Embalagem de Alimentos , Conservação de Alimentos , Liofilização , Frutas/química , Micotoxinas/química , Valor Nutritivo , Fenol/química , Picratos/química , Pós , Pressão , Ácidos Sulfônicos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...